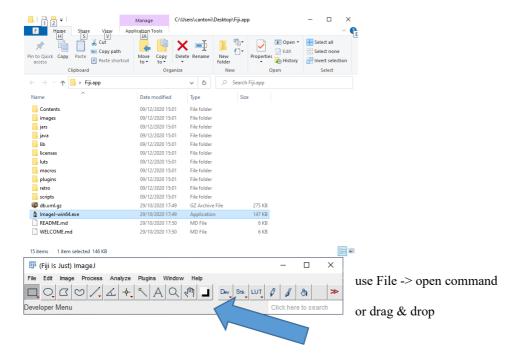
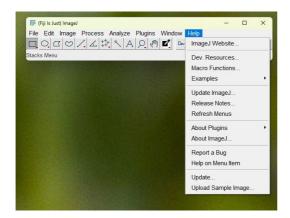
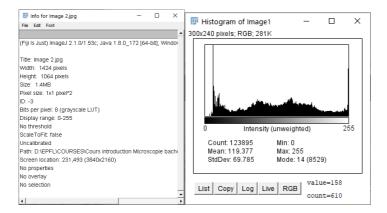

Download Fiji https://imagej.net/Fiji/Downloads

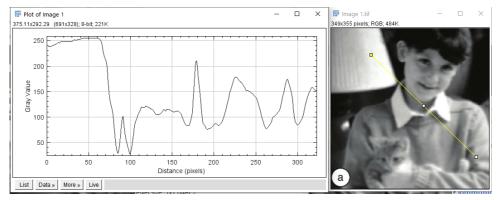

Place it on desktop and unzip (drag Fiji.app on desktop)


Download and extract sample images from moodle

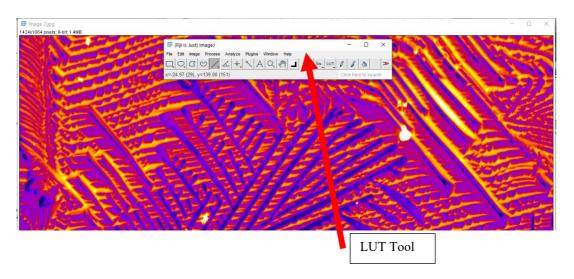
1. Start the program:

2. Getting help:


Documentation (nih.gov)


Getting help: ImageJ User Guide - IJ 1.46r (nih.gov)

3. Preparing the data


The quality of the analysis depends very much on the quality of the data!

- Importing images: Drag & drop or File → Open Image 1, Image 2 Image 3
 NOTE information on image window
- 2. Exploring the image:
 - a. Image \rightarrow Show info
 - b. Analyze → Histogram || of whole image and of a selection of the image
 - c. Analyze → Plot Profile: this requires a selection

- 3. Scale & Calibrate (Image 2 and Image 3)
 - a. Select full length of the scalebar with line tool
 - b. Analyze → Set Scale
- 4. Using color
 - a. Image \rightarrow Color \rightarrow Show LUT
 - b. Image \rightarrow Color \rightarrow Display LUTs
 - c. Image \rightarrow Lookup Tables \rightarrow Select a table
 - d. ALSO LUT tool & Lookup Tables Tool

4. Image Processing

Preparing the image for subsequent analysis

Open Image 1 and make copies (Image -> Duplicate) add some noise:

- a) Process -> Noise -> Salt and Pepper
- b) Process -> Noise -> add Noise
 - 1. Using Filters
 - a. Process \rightarrow Filters \rightarrow Convolve (See the matrix)
 - b. Process \rightarrow Filters \rightarrow Gaussian Blur (choose sigma, 2&15)
 - c. Process \rightarrow Filters \rightarrow Median (choose radius, 2&15)
 - d. Process \rightarrow Filters \rightarrow Variance (choose radius, 2&15)
 - e. Compare Gaussian Blur, Median, & Variance
 - f. Try different matrix filters:

3x3 average					5x5 average					
1	1	1			1	1	1	1	1	
1	1	1			1	1	1	1	1	
1	1	1			1	1	1	1	1	
					1	1	1	1	1	
gaussian				1	1	1	1	1		
1	2	1								
2	4	2								
1	2	1								

5. Spatial Domain Image Enhancement

Knowing what the options represent (Image 1, Image 2, Image 3)

1. Contrast Manipulation

- a. Image \rightarrow Adjust \rightarrow Brightness/Contrast (Linear)
- b. Check Histogram: Analyze → Histogram
- c. Process \rightarrow Math \rightarrow Gamma (Non-Linear), check Histogram before and after

2. Contrast Enhancement

- a. Process → Enhance Contrast ⇒ enhances image contrast by using either **histogram stretching** (grey levels) or **histogram equalization** (using the sum of pixel grey levels values as the transfer function)
 - i. Saturated pixels value: number of pixel values that are allowed to become saturated
 - ii. **Normalize:** it recalculates the pixel values of the image so that the range is equal to the maximum range of the data type
 - iii. **Equalize Histogram:** takes the square root of the histogram values to equalize the contrast based on a selection

3. Sharpening

- a. Process → Sharpen ⇒ Invokes a Laplacian filter: accentuates detail in the image but can also increase noise
- b. Process \rightarrow Filters \rightarrow Unsharp Mask: subtracts a blurred copy of the image
 - i. Radius: the standard deviation of the Gaussian blur
 - ii. Mask Weight: determines the strength of filtering (=1 would be an infinite weight of the highpass filtered image that is added
- c. Try to do a manual unsharp mask:
 - i. Duplicate image and use gaussian blur
 - ii. Use Process → Image Calculator... to subract blurred image from original image and add the result to the original image.

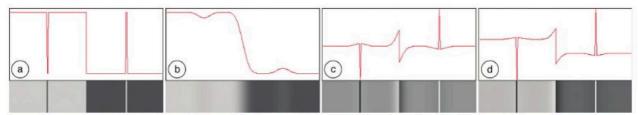


Figure 5.28 Operation of an unsharp mask, with line profiles of brightness: (a) original image; (b) Gaussian smoothed; (c) subtracting the smoothed copy from original; (d) adding the difference (c) to original.

- d. Process → Find Edges ⇒ Invokes two 3x3 Sobel Filters to generate vertical and horizontal derivatives
- e. Use Process \rightarrow Filters \rightarrow Convolve... to create your own sobel Filter

6. Image Enhancement in the Frequency Domain, using FFT

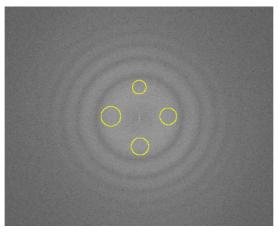
The aim is to find the defects in a transmission electron micrograph of CoFe₂O₄ with FFT manipulation

- 1. Open Image 5
- 2. Set correct scale in nm
- 3. Crop to make the image square
- 4. Save image as .tif
- 5. Process \rightarrow FFT \rightarrow FFT
- 6. Set correct scale: Image → Properties set nm to 1/nm

Fourier Filtering (direct way)

- 7. Make a circle on major reflections (use ctr-shift selection)
- 8. Edit \rightarrow Fill (make sure that foreground color is white)
- 9. Process \rightarrow FFT \rightarrow inverse FFT
- 10. Do FFT of filtered image (due to inversion symmetry in FFT selection on only half a "hemisphere" is necessary)

Fourier Filtering using masks, understanding the structure and application of masks


- 11. Apply a mask: Remember: Black areas (pixel value = 0) cause the corresponding frequencies to be filtered (removed) and white areas (pixel value = 255) cause the corresponding frequencies to be passed
- 12. On FFT, Make selections on vertical dots and fill them in (command F or Edit → Fill)
- 13. On FFT, Image \rightarrow Adjust \rightarrow Threshold
- 14. On FFT, Process \rightarrow Binary \rightarrow Convert to Mask, save as FFTmask.tiff
- 15. On image, FFT \rightarrow Custom Filter (select FFTmask.tiff as filter)

Explore images 7 and 8

- 16. Look at their FFT
- 17. Filter images by selecting certain fourier frequencies in order to highlight different lattice planes (use inverse FFT)

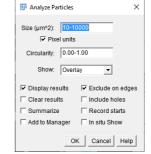
Explore images 9 (amorphous carbon film)

18. Select a filter that would make sense for a periodic structure (like below)

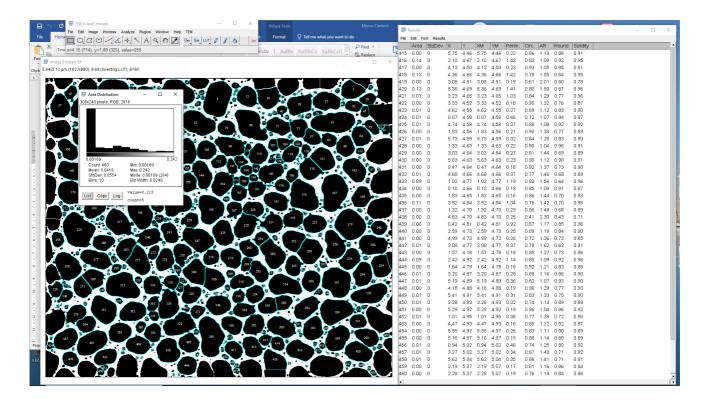


19. Observe what you filter did to image!

Segmentation & Thresholding, Particle Analysis and Image Measurements


The aim is to get the size distribution of the grains in Image 10.

- 1. Open Image 10
- 2. Set correct scale in µm or nm
- 3. Crop to remove the operating parameter bar
- 4. Save image as .tif
- 5. Process \rightarrow Filters \rightarrow Gaussian Blur (sigma 2)
- 6. Process \rightarrow Filters \rightarrow Unsharp Mask (sigma 2, mask weight 0.9)
- 7. Image \rightarrow Adjust \rightarrow Threshold (66-255)
- 8. Process → Binary → Watershed (to see exactly what it does activate Edit → Options → Misc and activate Debug mode)
- 9. Save binary image
- 10. Analyze \rightarrow Set measurements



11. Analyze Particles

- a. Size: define the range of the particle sizes for the measurements (try 0.10 to infinity & then 0 to 0.10)
- b. Circularity: ranges from 0 (infinitely elongated polygon) to 1 (perfect circle) leave as is
- c. Show: what to depict after calculation
- d. Exclude on edges: do not take into account particles at the edge of the image
- e. Check help

12. Analyze \rightarrow Distribution

7. Example of Fourier filtering

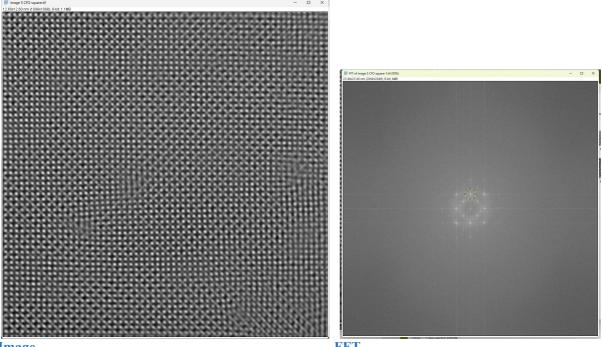
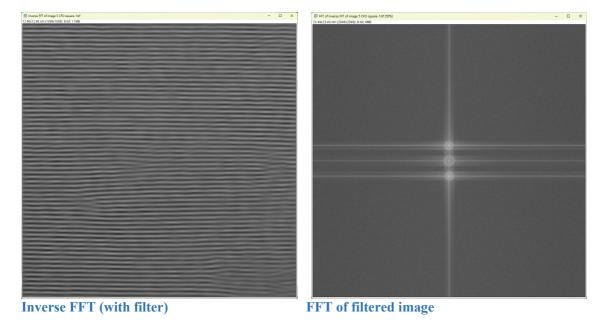



Image FF

FFT Filter (white = pass)

